ESTIMATION DE LA LUMINOSITÉ D'UNE ÉTOILE VARIABLE à partir d'une photographie.

Exercices préparatoires : opérations numériques sur **un** tableau de nombres

1. L'image de départ

L'image ci-contre est utilisée pour les exemples de traitements numériques qui suivent.

Dans cette image, une zone définie par ses coordonnées va être systématiquement explorée. (voir ci-dessous)

La zone concernée est limitée par le rectangle en pointillés. En utilisant la syntaxe du langage Python la zone est définie par : ligne du dessus, ligne du dessous, colonne de gauche, colonne de droite. Ce qui amène aux variables suivantes : |i1,|i2,c01,c02 = 74,82,118,129

2. Bibliothèques et chargement de l'image en gamme de gris

from PIL import Image
from pylab import *
im = array(Image.open("TCas a cliquer2.jpg").convert("L"))

İm	Nom symbolique à utiliser par la suite pour désigner l'image chargée dans la mémoire
array	Transforme en tableau à deux dimensions (hauteur, largeur)
Image.open	Tourne le robinet du "tonneau" qui contient l'image
convert("L")	Transforme l'image couleur (3 tableaux de données) en gamme de gris (un seul tableau).

3. Lister les valeurs des pixels de la zone /i1,/i2,co1,co2

On utilise la fonction print : print(im[li1:li2,co1:co2])

[[1	27	41	65	101	122	80	71	47	36	0]
[1	21	91	193	255	255	246	173	84	36	1]

[2	44	239	254	254	255	254	255	126	28	8]
[17	120	255	255	255	254	254	254	141	42	2]
[27	110	254	255	255	255	255	255	167	61	6]
[0	30	210	254	255	255	255	253	114	44	24]
[0	19	59	204	255	255	210	101	82	55	6]
[16	19	17	68	102	95	50	51	45	18	0]]

Remarques :

Chacun des pixels a une intensité définie par un nombre allant de 0 à 255.

Plus le nombre est gros, plus l'intensité est forte.

Comparer avec la zone définie par les pointillés ci-dessus.

4. Créer un nouveau tableau par filtrage.

Le filtrage remplace les intensités fortes par des zéros et les intensités faibles par des 1. image = 1*(im < s)

En listant la zone définie par li1,li2,co1,co2 on obtient

[[1	1	1	1	1	1	1	1	1	1	1]
[1	1	1	0	0	0	0	0	1	1	1]
[1	1	0	0	0	0	0	0	1	1	1]
[1	1	0	0	0	0	0	0	0	1	1]
[1	1	0	0	0	0	0	0	0	1	1]
[1	1	0	0	0	0	0	0	1	1	1]
[1	1	1	0	0	0	0	1	1	1	1]
[1	1	1	1	1	1	1	1	1	1	1]]

Comparer avec le listage précédent : on retrouve la forme de l'étoile.

Si l'on affiche l'image qui résulte du filtrage, on obtient :

5. Créer un autre tableau par le filtrage inverse

Le filtrage remplace les intensités fortes par des 1 et les intensités faibles par des 0. msq = 1*(im>s)

En listant la zone définie par li1,li2,co1,co2 on obtient :

[[0	0	0	0	0	0	0	0	0	0	0]
[0]	0	0	1	1	1	1	1	0	0	0]
[0]	0	1	1	1	1	1	1	0	0	0]
[0]	0	1	1	1	1	1	1	1	0	0]
[0]	0	1	1	1	1	1	1	1	0	0]
[0]	0	1	1	1	1	1	1	0	0	0]
[0]	0	0	1	1	1	1	0	0	0	0]
[0]	0	0	0	0	0	0	0	0	0	0]]

Comparer avec les listages précédents : on retrouve la forme de l'étoile.

Si l'on affiche l'image qui résulte du filtrage, on obtient :

Ce dernier tableau de nombres va être utilisé comme masque de l'image initiale : à chaque fois qu'il contient un zéro le pixel correspondant de l'image sera mis à 0 (c'est à dire qu'il s'affichera en noir). A chaque fois qu'il contient un 1 le pixel correspondant de l'image sera conservé à sa valeur. Ce petit miracle se réalise par une multiplication de l'image par le masque.

Pour créer le nouveau tableau par cette opération, on écrit simplement :

im2 = im * msq

En listant la zone définie par li1,li2,co1,co2 on obtient : **(voir page suivante).**

]]]	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	193	255	255	246	173	0	0	0]
[0	0	239	254	254	255	254	255	0	0	0]
[0	0	255	255	255	254	254	254	141	0	0]
[0	0	254	255	255	255	255	255	167	0	0]
[0	0	210	254	255	255	255	253	0	0	0]
[0	0	0	204	255	255	210	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0]]

Comparer avec les listages précédents : on retrouve la forme de l'étoile **et** les valeurs les plus faibles ont été éliminées.

Si l'on affiche l'image qui résulte du filtrage, elle ressemble à celle du masque.

6. Résumé

Dans ce petit support, nous avons vu :

Comment charger une image JPEG et la convertir en gamme de gris.

Comment lister les valeurs des pixels sur une zone prédéfinie.

Comment effectuer le filtrage à partir d'un seuil pour réaliser un masque.

Comment appliquer un masque sur l'image de façon à ne garder que les pixels les plus "forts".

Il faudrait maintenant refaire les mêmes manipulations sur une image en couleur.